DEEP-SEA GALATHEID CRUSTACEANS (ANOMURA: GALATHEIDAE) COLLECTED BY'THE 'CIDARIS I' EXPEDITION OFF CENTRAL QUEENSLAND, AUSTRALIA

Abstract

KEIJI BABA Baba, K. 19940601 : Deep-sea galatheid crustaceans (Anomura: Galatheidac) collceted by the 'Cidaris J' Expedition off central Queensland, Australia. Memoirs of the Queensland Museum 35(1): 1-21. Brisbane. ISSN 0079-8835.

A collection of deepsea galatheid crustaceans obtained by the 'Cidaris I' Expedition off the C.entral Queensland Shelf contains 20 species, five of which are described as new: Bathymunida inermis, Munida alia, M. declivis, M. rubridigitalis, and Munidopsis cidaris. Galathea inconspicua Henderson, 1885 is recorded for the first time since the unique male holotype taken by the 'Challenger' off Banda Island. The ranges of 13 species are extended. \square Crustacea, Anomura, Galatheidae, deepsea, Australia, Indo-West Pacific.

Ki. Baha, Faculty of Education, Kumanoto University, 2-40-1 Kıurokami, Kumantuto 860, Japan; 21 Octaber 1993.

In 1986, under the reseanch project "The deepsea benthos off the Great Barrier Reef Shelf and adjacent Coral Sea", 113 deepsea stations were worked by the 'Cidaris I' (Dr M. Pichon, Cruise Leader). Crustaccans from the samples obtained have been studied by Bruce (1989, 1990), Crosnier (1988), Macpherson (1990), Richer de Forges \& Guinot (1990) and Poore \& Bardsley (1992). The present material comprises 112 specimens in 24 lots taken from 15 stations in depths ranging between 296 and 1609 m . They are divided among 20 species of the Galatheidae.

Twenty-two species of the Galatheidae have hitherto been known from Australia (Stinipson, 1858; Haswell, 1882a, 1882b; Miers, 1884; Henderson, 1885, 1888; Whitelegge, 1900; Grant \& McCulloch, 1906: Balss, 1921; McNeill. 1926, 1968; Hale, 1927; Boone, 1935; lewinsohn, 1967: Haig, 1973, 1974: Baba, 1986). Many of these are shallow-water inhabitants, and the deepsea forms (occurring in transitional depths) are represented by only five species: four of Munida and one of Galathea. There is no previous tecord for the deepsea Muridopsis from Australia. Among the 20 species reported herein, 18 are recorded for the first time from Australia, including five new species (one of Bathymunida, three of Munida, one of Munidopsis). No chirostylids are included in the collection, although six (one Chirostyus, one Eumunida and four Uroptychus) are known to oceur in Australian waters (Henderson, 1888; Haig, 1974; Baba, 1986; de Saint Laurent \& Macpherson, 1990).

Measurements are shown in parentheses under the heading of "Matcrial Examined", indicating the posiorbital carapace length. The material is
deposited in the Queensland Museum, Brisbane (QM).

SYSTEMATICS

Bathymunida Balss. 1914
Bathymunida inermis stz, nuv.
(Fig. 1)

Material Examincd

HoLotype: ovig, of (3.0mm), QMW 19702, Sia. $42-2$ ($17^{\circ} 21.77^{\circ} \mathrm{S}, 146^{\circ} 48.52^{\circ} \mathrm{E}$), $303-296 \mathrm{~m}$, sledge. 15 May 1986.
Paratypes: Same data as holotype, 8 of ($2.6-3.9 \mathrm{~mm}$), 10 ovig. $9(3.3-3.7 \mathrm{~mm})$, 3 早 $(2.7-3.8 \mathrm{~mm})$, QMW19701.

Etymology

From the Latin inemis (unarmed) alluding to the lack of spines on the dorsal surface of the carapace.

Description of Holotypr

Carapace, excluding rostrum, ahout 1.5 times as wide as long; dorsal surface convex from side to side, unamned, transverse ridges as figured; cervical groove distinct, its dorsal midpoint slightly posterior to midlength of postorbital carapace length; in profile, gastric region moderately inflated, preceded by distinct depression, cardiac region medially elevated, border between branchial and cardiac regions also elevated. Lateral margins posteriorly divergent to point somewhat posterior to anterior cervical grove, convergent posteriorly from this point. Anterolateral spine well developed, directed

FIG. 1. Bathymunida inermis sp. nov. A-G, ovigeous fcmale holotype; H, malc paratype (carapace length, 3.5 mm). A, carapace and abdomen, dorsal view; B, same, lateral view, tailfan omitted; C, anterolateral part of cephalothorax, showing antennular and antennal peduncles, ventral view; D, endopod of lcft third maxilliped, lateral view; E, sternal plastron; F, right cheliped, dorsal view; G, right first walking leg, lateral view; H, right cheliped, dorsal view. Scales $=1 \mathrm{~mm}$.
straight forward, overreaching supraocular spine, followed by small process directly behind it: branchial lateral margin behind cervical groove with a few reduced spines and crenulations; long fine setae sparse on anterior median part of car-
diac region and anterior part of branchial lateral margin.
Rostrum overreaching end of cornea, much wider than supraocular spines; directed slightly upward, moderately compressed laterally, ending
in blunt tip, dorsally with fine tubercles, midlaterally ridged. Supraocular spines very short, 0.15 times as long as, and, not distantly remote from rostrum.
Transverse ridges on abdominal segments as illustrated; second through fourth segments each with 4 short blunt spines on anterior ridge.
Eyes dilated, depressed, with fringe of long setae near base of cornea.
Basal segment of antennule relatively short, with denticular spines on distal half of mesial and lateral margins, distolateral margin with dorsoventrally bifid spines somewhat longer than distomesial one. Antennal peduncles partly visible in dorsal view, placed beneath anterolateral spine of carapace; first segment with ventral distomesial margin produced into spine not longer than second segment, second segment with distomesial and distolateral spines, former acute and shorter, latter directed straight forward, ending in blunt tip.

Third maxillipeds typical of genus, ischium elongate, flexor margin with stout distal spine, extensor margin with 1 or 2 small distal spines: merus short, flexor margin with sharp median spine, extensor margin with well-developed distal spine accompanied proximally by a lew denticular crenulations.

Sternal plastron as illustrated.
Chelipeds similar, 2.3 limes as long as postorbital carapace lengti; mesially provided with fine plumose setae, dorsally and ventrally with scalelike granulate ridges. Merus equally wide as carpus, but much wider than chela (distal 2 segments), terminally armed with welldeveloped mesial, somewhat smaller dorsal, and very small blunt lateral spines, dorsally with small spines roughly in row. Carpus with 2 mesial marginal spines; distal one terminal in position. as wide as proximal, but short, ending in blunt tip; proximal one at midlength, acute. Propodus 0.76 times as wide as carpus, 2.2 times as long as wide, unarmed. Fingers 0.8 times as long as palm, not gaping, distally sharp, curved and crossed.

Walking legs relatively slender, with iridescent, fine plumose setae along extensor margins except for distal segment; first walking leg reaching midlength of dactylus of cheliped, Meri similar on first and second walking legs but longer on first, extensor margin with line of short inclined spines on first and second walking legs (terminal one prominent on first leg, small on second leg), unarmed on third leg; flexor margin with shon terminal spine followed proximally by denticles on first 2 legs, no terminal spine on third
leg. Carpus having extensor margin with blunt distal spine, paralleling row of a few denticles or denticular processes on dorsolateral surface. Propodus 0.84 times as long as dactylus on first leg, equally long on second and third legs, extensor margin with a few denticles on first and second legs, flexor margin with slender distal spine distinct on first and second legs, absent on third. Dactylus slender, curved as figured, extensor margin with relatively long coarse setae. flexor margin smooth, with sparse setae proximally.

Variation and Differences between Sexes

All paratypes agree with the holotype, except for one ovigerous female having cheliped carpus with additional spine proximal to midmesial marginal spine. Males differ from females in having cheliped carpus and propodus both relatively long and slender, especially in large males (length-width ratios of carpus 1.7-2.4 in females, $2.6-2.9 \mathrm{in}$ small males $(2,6-2.7 \mathrm{~mm}), 7.2$ or 8.0 in large males ($3.6-3.7 \mathrm{~mm}$); those of propodus 2.0 3.1 in females, 4.3-7.6 in small males, 13.4 in large males); propodus and fingers much narrower than carpus. Chelipeds 2.3-2.4 times as long as postorbital carapace length in small males. and all females, 3.5 times longer in large intact male. First walking leg fully reaching end of cheliped in ovigerous females, terminating at distal end of carpus in large males, but in small maies ranging from reaching end of propodus to almost midlength of finger.

REMARKS

Six species of Bathynuurida are known to date: B. aspinirostris Khodkina, 1981, from Norfolk Island Ridge in 51m: B. balssi Van Dam, 1938, from Seram Sea in 118 m : B. brevirostris (Yokoya, 1933), from Japan in $105-106 \mathrm{~m}$ (Baba, 1970: 59); B, longipes Van Dam, 1938, from Bali Sca near Kangean Group and Sulu Archipelago in $100-140 \mathrm{~m} ;$ B. prolae Balss, 1914, from the Red Sea and Madagascar in 150-255m (Baba, 1990: 952), and B. quadratirostrata Melin, 1939, from the Bonin Islands in 128 -183m. Baba (1990; 952) suggested that B. polae and B. bolssi may be identical.
Several important characters separate B. inermis from all other species of Bathymunida: 1 , strong dorsal spines on the carapace (on the gastric and cardiac regions in particular) are absent; 2, the supraocular spines are much closer to the very stout rostral spine; 3 , the transverse ridges on the carapace are more distinet; 4 , the
chela is much narrower than the carpus and merus. These characters (only except for the last) do not fit the definition of the genus given by Balss (1914). However, due to the large number of shared characters unique to Bathynunida, the present species is provisionally placed in this genus. These are: the orbital margin is sostrongly concave that the orbit is largely visible in a dorsal vjew; the second, third and fourth abdominal tergites bear 4, 2, 2 spines on the anterior ridge; the third thoracic stemite is anteriorly strongly produced, with the entire posterior margin usually contiguous with the anterior margin of the following stemite; distal two segments of the endopod of the third maxilliped, and even the menus, ane reduced in size; the dactyli of the walking legs are slender and nearly smooth without spines on the flexor margin. Bathymunida will be revised in a series of studies on New Caledonian material now in progress.
The longer chelipeds displayed by large males may not be aberrant, because examples of this are also known in B. polac (see Baba, 1990: 952).

Galathea Fabricius, 1793 Galathea pubescens Stimpson, 1858

Galatheapubescens Stimpon, 185s:252; Baha, 1985: 76 (synonymy and references).

MATERIAL EXAMINED

Stн. 42-2 ($17^{\circ} 21.77^{\prime} \mathrm{S}$, $\left.146^{\circ} 48.2^{\circ} \mathrm{E}\right)$, 303-296m, Nledge, 15 May 1986 : 1 o (3.4 mm), QA1W19703.

Remarks

This specimen has a less spinose and less setose carapace, as noted earlier for some specimens from the Philippines (Baba, 1988: 76) as well as from the East China Sea (Baba, 1988: 77). This is one of the few speeies of Galathea that are found in the deepsea.

Range

Previously known from Japan, East China Sea, Philippines, Western Australia and Zanzibar, in $40-494 \mathrm{~m}$. Reconded for the first time Irom eastern Australia.

Galathea inconspicua Henderson, 1885
(Fig. 2)
Galurheu inconspicua Henderson, 1885: 408; 1888 : 122, pl. 12, Fig. 2.

Material Examined

Sta. $42-2$ ($\left.17^{\circ} 21.77^{\circ} \mathrm{S}, 14 \mathrm{~h}^{\circ} 48.52^{\prime 1} 1 \mathrm{i}\right), 303.29 \mathrm{hm}$. sledge, 15 Hay 1986,1 ovig. $9(5.0 \mathrm{~mm})$, QMW 19704.

DESCRIPTION

Carapace, cxcluding rostrum, 1.2 times as long as wide, dorsal surface with distinct setiferous ridges as illustrated; 8 small spines on epigastrie region and 2 spines on each lateral protogastric region. Lateral margins slightly convex, with 9 spines on each side; 2 in front of cervical groove: first anterolateral (preceded by 2 small spines mesial to it); second small, with accompanying spinules (1 dorsal and 3 or 4 ventral to it, ventralmost somewhat larger); third to ninth behind cervical groove; fifth, sixth and ninth very small.
Rostrum very narrowed distally, length fully more than half that of remaining carapace; lateral teeth anteriorly diminishing in size. anterionmost situated somewhat anterior to midength of rostrum.
Pterygostomian flap lacking spine on surface and anterior margin.
Orbit sharply delimited laterally by small anterolaterally directed spine, ventrolateral margin with line of 3 or 4 small teeth.
Eyes somewhat depressed and elongate, mesial and lateral margins slightly convex, eyestalks with fringe of short setae near cornca.
Seennd and third abdominal segments each with 4 transverse ridges.
Antennular basal segment with very reduced mestial lerminal spine, well-developed lateral terminal spine, stronger dorsal spine and a few very small lateral marginal spines proximal to dorsal me; terminal segment with tuft of pronounced setae on distodorsal margin. Antcnnal peduncle having first segment with well- developed disfuventril process ending in sharp point reaching nearly to end of second segment, second segment with distolateral spine much longer than distomesial spine; third segment with distomesial and distolateral spines, both very small, latter rather dorsal in position.
Ischium of third maxilliped with welldeveloped spine on flexor distal margin and smal! one on extensor distal margin, mesial ridge with 20 or 21 denticles. Merus with 3 spines on flexor margin; proximat one well developed, sithated about at midlength; distal one distinctly smaller than proximal one, terminal in position; median onc very small, somewhat proximal to midpoint between these; extensor margin with small spine at distal end.

FIG. 2. Gularhea inconspicua Henderson, ovigerous female from Station 42-2. A, carapace and anterior abdominal segments, dorsal view; B, anterolateral part of cephalothorax, showing antennular and antennal peduncles, ventral view; C, endopod of right third maxilliped, lateral view; D, anterior part of sternum; E, left cheliped, dorsal view; F, left first walking leg, lateral view; G, distal two segments of same, lateral view. Scales $=1 \mathrm{~mm}$.

Anterior part of sternum as figured; third thoracic sternite roughly quadrangular, fourth thoracic sternite 3.1 times as wide as preceding, relatively long, width 1.9 times length of anterolateral margin.

Chelipeds slender, fully more than 5 times as long as carapace excluding rostrum; sparsely provided with fine setae. Spination in dorsal view as illustrated; 4 rows of spines (2 dorsal, 1 lateral, 1 mesial) on merus, carpus and propodus, mesial
terminal spine on merus much pronounced. Carpus 6 times as long as wide, more than half length of merus, bearing no prominent spines but somewhat larger distal one on mesial margin. Propodus distally somewhat wider, slightly longer than carpus, 6 times as long as wide. Fingers three-fourths as long as palm, somewhat gaping proximally, distally fitting to each other (when closed) with a few intermeshing teeth; opposable margins with line of tubercles on distal two- thirds, proximally with pronounced basal process. Ventral surface of cheliped with 2 rows of spines on merus, scattered spinules on carpus and palm, and larger distoventral spine on carpus.

Walking legs also slender and sparsely setose. First walking leg overreaching end of merus but barely reaching midlength of carpus of cheliped. Meri posteriorly diminishing in size; extensor margin with 14, 13, 9 spines on first, second, third walking legs, respectively; tlexor margin with 7 or 8 spines, terminal of these much larger. Carpus with row of 7 small extensor marginal spines paralleling another row of small spines on lateral face. Propodus about 11 limes as long as wide, slightly more than twice as long as dactylus, extensor margin with 5 or 6 small spines on proximal half on first and second legs, nearly none on third, flexor margin with 10 or 11 slender spines (excluding distomesial) on first, 9 or 11 on second, 10 on third. Dactylus ending in sharply curved claw preceded by 9 or 10 rather erect teeth decreasing in size proximally, each tooth with comeous setae arising from its base.
Epipods present on chelipeds, absent from walking legs.

Remarks

This specimen is referred without doubt to G. inconspicua, the identification verified by examination of the male holotype in the collection of the Natural History Museum, London (BM1888:33). The holotype is now in poor condition, lacking all pereopods.
The spination of the carapace illustrated by Henderson (1888: pl, 12, fig. 2) is not correct; the epigastric row of 6 spines in the bolotype is somewhat more posterior in position, accompanying a lateral protogastric spine posterior and leteral to lateral extremity of this row, and the lateral marginal spines are rather distinct, only lacking the hindmost (eighth) as in the present specimen; there are some minor discrepancies between the type and the present specimen: in the type the carapace is wider, the length-width ratio (exeluding the rostrum) being 1.08 ; the merus of
the third maxilliped on the right side (detached and missing on the left) bearing three spines as described by Henderson (the median one being prominent). The presence of epipods on the chelipeds, the spinose anterior gastric region; the basal antennular segment having a reduced distomesial spine, and the carpus of the cheliped lacking prominent mesial marginal spines, link the species strongly to G, albatrossae Baba, 1988 from the Philippines and the Ryukyus (Baba, 1988:65; 1989:128). The latter, however, has the carapace with fewer lateral marginal spines, the triangular rostrum distally not strongly narrowed, the chelipeds shorter relative to the carapace, the walking legs having fewer flexor marginal spines on the propodus (at most four) and dactylus (six), and the anterior part of the sternum longer relative to width (the fourth thoracie sternite being 2.7 times as wide as the preceding sternite, its width 2.8 times the length of its lateral margin).

The full description provided above will complement the brevity of the previous descriptions of the type material by Henderson (1885, 1888).

Range

Off Banda Island and eastem Australia, is 296659 m . This is the first record for the species since that of the unique holotype from 'Challenger' Station 194.

Munida Leach, 1820
Munida alia sp. nov,
(Fig. 3)

Material Examined

HoLOTYPE OVig. $7(9.2 \mathrm{~mm})$, QMW19705, Sta. 52-2 (18 ${ }^{\circ}$ 04. $16^{\circ} \mathrm{S}, 147^{\circ} 17.17^{\circ} \mathrm{E}$), 490-512mi, heann trawl, 18 May 1986.

ETYMOLOGY

From the Latin alius (another), alluding to the other species of a group centered around Munida heteracantha.

DESCRIPTION OF HOLOTYPE

Carapace 1.09 times as long as wide, when measured from level belween mesial bases of right and left anterolateral spines to midpoint of posterior margin of carapace. Dorsal surface moderately convex from side to side, with relatively numerous striae as illustrated, sparsely provided with coatse setae, on abterior half in particular; cervical groove distinct, anterior bifureation with iridescent setae at end (on Jateral margin of carapace). Epigastric region with 10

FlG. 3. Munida alia sp. nov., ovigerous female holotype. A, dorsall view, left appendages omitted; B, anterolateral part of cephalothorax, showing antennular and antennal peduncles, ventral view; C , endopod of left third maxiliped, lateral view; D, sternal plastron; E, distal segments of right first walking leg, lateral view. Scales = 1 mm .
spines in 5 paits, second from mesial pair situated directly behind supraocular spines, accompanying small spine at its lateral base. Lateral protogastric spine distinct, preceded by small spine slightly anterior and lateral to it. No other spinulation elsewhere on dorsal surface. Lateral margins slightly convex, anterolateral spine sharp and prominent, directed forward and somewhat laterad, barely reaching sinus between rostrum and supraocular spine, followed by a few denticular spines and 1 small spine slightly anterior to midpoint between first spine and anterior cervical groove; 5 subequal spines on anterior branchial margin behind anterior cervical groove. Front margin slightly oblique.
Rostrum spiniform, nearly horizontal but slightly upcurved distally, length 0.4 that of remaining carapace, about 3 times that of supraocular spine. Supraocular spincs moderately remote from rostral spine, somewhat divergent anteriorly.
Abdominal segments strigose, second and thind segments each with 6 transverse ridges, first and fourth ridges elevated, latter preceded by distinct groove or trough.
Eyes dilated, cornea 0.3 times as wide as carapace; eyestalk with fringe of short setae near cortiea.
Basal segment of antennule elongate, length (exclusive of spines) 2.2 times its greatest width; 2 terminal spines subequal in size. Antennal peduncle having first segment with strong ventral distomesial spine reaching end of next segment; second segment with well-developed distomesial and distolateral spines, former distinctly overreaching end of peduncle, accompanied by small extra spine proximal to it, latter ending at midlength of ultimate peduncular segment.
Endopod of third maxilliped relatively slender. Ischium with prominent spine on flexor distal margin, unarmed on extensor margin; mesial ridge with 25 or 26 denticles. Mcrus with 2 flexor marginal spines, proximal one very strong, situated about $1 / 3$ from proximal end, distal one small and terminal: no spine on extensor margin. Distal 2 segments relatively slender.
Sternal plastron as illustrated, with a few striac on fourth thoracic stemite. Third thoracic sternite laterally expanded, 4.5 times as wide as long. anterior margin sinuous, provided with fine blunt denticles. Followitg sternite twice as long as preceding, with relatively wide anterior margin, not triangular.
Chelipeds similar, relatively stous, Jength 3 times that of carapace (excluding rostrum), sur-
face with fine squamiform ridges, and both iridescent, and fine plumose setae, particularly on mesial face. Spination as figured. Merus with another row of 4 ventromesial spines; 3 prominent mesial marginal spines, particularly distalmost. Carpus with 3 small ventromesial and 1 distoventral spines, all invisible in dorsal view, Propodus moderately depressed, somewhat narrower than merus, more than twice as long as wide, nearly equal in length to movable finger. lateral marginal spines somewhat dorsal in position, dorsal surface with median row of spines, mesial margin with row of 3 spines paralkeling another row of 4 distinct and a few small spines somewhat dorsal in position. Fingers distally curving, crossing when closed, somewhat gaping in proximal half; moyable finger having mesial margin with 1 well-developed proximal and 1 small subterminal spine interspersed by a few small spines; fixed finger with line of 5 lateral marginal spines continued onto propodus, distal 2 nearer to each other, distalmost subterminal.
Walking legs relatively short, with squamiform ridges on surface and both iridescent and fine plumose setae on mesial face except for dactylus with coarse setae; first walking leg reaching to midlength of cheliped propodus. Merus with row of 11 or 12 extensor marginal spines and another line of 6 or 7 flexor marginal spines on first and second walking legs, these spines diminishing in size proximally; terminal spines pronounced, flexor marginal terminal larger, proximal 4 or 5 extensor marginal spines very small and somewhat lateral in position; on third walking leg. extensor margin with 4 small spines on proximal half, flexor margin with a few spines and denticles. Carpus with 4 (on first), 3 (on second), and 1 (on third) spines on extensor margin, in addition to one at distal end of flexor margin. Propodus less than twice, but more than 1.5 times, length of dactylus, fully 6 limes as long as high, flexor margin produced into spine on distal corner, with 11 movable slender spines. Dactylus ending in curved corneous spine, flexor margin convex, with 10 (on first), 9 (on second), 8 (on third) slender spines, each arising from low process, but distalmost of these present at base of corneous toe.

REMARKS

Lack of granules on the seventh thoracic sternite, subequal terminal spines on the antennular basal segment, and lack of the extensor distal marginal spine on the merus of the third maxiHliped link the species to Munida semoni

Ortmann. 1894, M. oritea Macpherson \& Baba. 1993 and M. striola Macpherson \& Baba, 1993. The new species differs from the last two species in the less strigose stemal plastron and the clistomesial spine of the hasal antennal segment not distinctly overreaching the second antennal segment. Another close relative, M, semoni, is characterized by a row of spines on the second abdominal segment, and absence of the extra spine on the mesial margin of the second segment of the antennal peduncle, both the obvious differences from the new species.

Munida curvirostris Hendersun, 18 s's
Munida cunirostris Henderson. 1885: 112.
Munida militaris var. curvirostris Henderson. 1888: 139. pl. 3: figs. 7. 7A, 7B.

Munida andumaniea Alcock. 1894: 321

Material Examined

Sta. 51-2 (18003.85'S, 147019.50'E), 689-704m, sledge, 18 May 1986. 2 g(10.2. 12.5 mm), 2 ovig. ใ $(10.2,13.4 \mathrm{~mm}) .1$ ใ(6.2mm). QMW19706.

Remarks

As noted by Baba \& Macpherson (3991:538), Munida andamanica Alcock, 1894, a wellknown species in the lndo-West Pacific, should be merged with M. curvirostris Henderson, 1885.

Range

Indo-West Pacific from east African coast castward and northward to Japan, in 141-1,360m: see Baba (1988:86) for distribution.

Munida declivis sp, nov.
(Fig. 4)

Material Examined

Holotype: $9(7.6 \mathrm{~mm})$, QMW19708,Sia. 42-2 ($17^{\circ} 21.77^{\prime} \mathrm{S}, 146^{\circ} 48.52^{\circ} \mathrm{E}$), $303-296 \mathrm{~m}$, sledge, 15 May 1986.
Paratypes: Same data as holotype, 9 ot (6.4-4.2mm), $19(7.4 \mathrm{~mm})$. 5 spec. (sex indel., $5.7-4.1 \mathrm{~mm}$). QMW 19707; Sta. 46-3 ($17^{\circ} 55.38^{\prime} \mathrm{S}, 147^{\circ} 00.96^{\prime} \mathrm{E}$), $295-309 \mathrm{~m}$, beam trawl. 16 May 1986. I $\delta(4.3 \mathrm{~mm})$. 1 spec. (sex indel., 2.7 mm). QMW19709.

Etymology

From the Latin declivis (sloping, inclined) referting to the very oblique front margin.

Description of Holotipe

Carapace elongate, 1.3 times as long as wide when measured in midline from level between mesial bases of anterolateral spines to posterior margin of carapace. Transverse ridges as figured, cervizal groove distinct. Epigastric region with row of 10 spines in 5 pairs, median pair small, mesial second pair directly behind supraocular spines promitent, other pairs gradually diminishing in size laterally, lateral protogastric and posteervical spines small but distinct. Lateral margins subparallel, bearing 8 spines, anterior 3 in front of, and remaining 5 bchind, cervical groove; first anterolateral, largest. somewhat mesial to Ievel of third to eighth, second spine small, third smaller than first, placed at midpoint between anterolateral spine and anterior cervical growe, following 5 spines on anterior branchial region, subequal. No spinc on posterior transverse ridge. Front margin strongly oblique.

Rostral spine 0.4 times as long as remaining carapace, slightly arched in lateral view, with small tubercles dorsally. Supraocular spines dirccted somewhat dorsad, subparallel to rostral spine, moderately remote from rostrum, and harely reaching its midlength.

Second abdominal segment with 3 transverse ridges, first (anterior) ridge with 8 spines, second ridge interrupted, third ridge uninterrupted, preceded by distinct groove. Third abdominal segment unarmed.
Basal segment of antennule elongate, distomesial spine distinctly shomer than distolaicral. proximal lateral spine small, median laterial spine clongate, directed anterodorsad. Antemal peduncle having first segment with ventral distomesial spine sharp, moderate-sized, not realloing end of second segment; second segment with distomesial and distolateral spines both well developed, subequal in size; third segment unarmed.
Ischium of third maxilliped with welldeveloped spine on flexor distal margin and very small onc on extensor distal margin, mesial ridge with 22 or 23 denticles. Merus relatively less setose, flexor matgin with 2 spines, distal one terminal and small, proximal one prominent. slightly proximal to midength, extensor margin unarmed.
Stemal plastron barely strigose. Third thoracis sternite short, about 5 times as wide as long; founth thoracic sternite triangular in shape, width 2.3 times that of preceding sternite.

Chelipeds unequal; right one shorter, presumably regencrated, with somewhat

FIG. 4. Munida dechivis sp. nov., female holotype, A, carapace and abdomen, dorsal view; B. anterolateral part of eephalothorax, showing antennular and antennal peduncles, ventral view; C . endopod of right third maxilliped, lateral view; D, sternal plastron; E, left cheliped, dorsal view; F, right first walking leg, lateral view; G, distal part of same, lateral view. Seales $=1 \mathrm{~mm}$.
pronounced spination. Left cheliped 4.6 times as long as postorbital carapace length, with chela somewhat depressed; laterally with fine plumose setae, mesially with both iridescent and plumose setae; ventral surface granulate; dorsally armed with 4 rows of spines on merus, carpus and
propodus (2 dorsal and 1 mesial, 1 lateral); another ventral row of smaller spines near mesial margin on merus and propodus. Merus relatively long, slightly shorter than chela (propodus and fingers combined). Carpus 2.8 times as long as wide, 0.66 times as long as propodus. Propodus
4.4 times as long as wide. Fingers 0.89 times as long as propodus, slightly gaping proximally, distally ending in strongly curved, crossing claws: movable finger having mesial margin with 3 spines (proximal pronounced, distal terminal, median at $2 / 3$ from proximal end), accompanying 1 dorsal and I ventral row of snialler spines, each row situated near mesial margin: fixed tinger with row of lateral spines continued onto propodus.

Walking legs slender, dorsally with both fine plumose and iridescent setac. First walking leg reaching end of cheliped carpus. Merus with spines. on flexor and extensor margins on first and second walking legs, distalmost of latter prominent but falling short of end of carpus, spination on third leg rather reduced. Carpi of first and second walking Icgs each with welldeveloped spine on extenser and flexor distal margins and additional smaller one about at midIength of extensor margin, that of third walking leg with small spine on extensor distal margin. Propodus 1.2 times as long as dactyli on first walking leg, equally long on second and third, flexor margin with 10,9,2 or 3 slender spines on first, second and third leg respectively. Dactylus slender, slightly curving, ending in corneous tip on first 2 legs; somewhat stouter, more strongly curved, ending in strong claw on third leg; flexor margin with 4 or 5 very fine dentieles each with short corneous setac, distalnost seta present at point 0.36 from distal end.

Variation

Supraocular spincs usually subparallel, rarely somewhat convergen anteriorly, length 0.240.36 (average, 0.29) times that of rostral spinc. Epigastrie spines numbering mostly 8 (4 pairs): in younger specimens modian and lateralnost pairs obsolcte. Number of spines on secund abdominal segment usually 8 , rarely $7,6,5$ or 4 , fewest number only in younger specimens Flexor margins of propodi of walking legs with usually 7 or 8 spines, occasionally 6 , rarcly 6 or 9 on first and second walking legs. 3 or 4 on third. Dactyli of first and second walking legs with 4 or 5 , rarcly 6 small spines, ultimate one rather distant from toe end (at least $1 / 4$ of length), that of third walking leg with usually 1 , rarely 3 very small spines, present in proximal half.
Malcs with 2 pairs of gonopods.

Remarks

The strongly oblique front margin, elongate carapace, and slender walking legs, characteristic
of Munida dectivis, are also possessed by M. kuboi Yanagita, 1943. The new species is readily distinguished from that species by the lack of dorsal spines on the third abdominal segment and the much shorter and very spinose chelipeds.

Munida eminens Baha, 1988

Mrumiditermmons Bahb, 1988: 95, fig. 35.

Mattrial Examined

Sta. 15-4 ($17^{\circ} 45.99^{\circ}$ S. 148039.09 ${ }^{\circ}$ E), 9(34.958m, heam Irawl, 9 May $1986,18(128 \mathrm{~mm})$, QMWI9710.

REMARKS

Munden eminens may be characterized by the following combination of characters: the carapace learing four lateral marginal spines hehind the anterior bifureation of the corvical groove; the antennal peduncle having the first segment with an extremely long distonesial spine directed straight forward, only slightly fulling short of the end of the rostral spine; the third thoracic sternite short and strongly expanded laterally: and the dactyli of the walking legs depressed, falciform and proportionately wide.
The present specimen is not intact, having no abdomer and chelipeds. Lack of the posterior cardiae spine as well as the hindmost of the three posucervical spines displayed by this specimen may be consudered us wariation.

Range

Previously known from the Philippines in Palawan Passage and oft southeastern Luzon, in $564-686 \mathrm{~m}$. The range is now extended to eastern Australiu.

Munida heteracantha Ormann. 1892

Munidu heveracantha Ortmann. 1892: 255, pl. 11: Jitre 12, 12i, 12k; Macpherson \& Baba, 1993; 303, lig 6.

Munded exigher Babia. 1988:98. Tig. 36.

material Examined

Sla. 42-2 ($\left.17^{\circ} 21.77^{\circ} \mathrm{S}, 146^{\circ} 48.52^{\circ} \mathrm{E}\right), 303.24 \mathrm{~mm}$, sledye, 15 May 1986,1 (5) 4.8 mm), QMW19717.

Remarks

The type material of M. heteracumha now in the collection of the Musce Zoologique. Sirusbourg, has been redescribed by Macpherson \& Baba (1993:393) and M. exigur Babs, 1988, was synonymized with this species.

The present specimen has been found in a lot from Station 42-2 in which M. declivis new species is included (see above).

RANGE

Previously known from the Philippines, Indonesia, off Hong Kong, and Sagami Bay, Japan, in 68-222m. Recorded from eastern Australia for the first time.
?Munida incerta Henderson, 1888
Munida incerta Henderson. 1888: 130, pl. 13: figs. 4, 4a. Baba, 1988: 106 (synony my and references).

Material Examined

Sta. 47-2 ($\left.17^{\circ} 51.76^{\circ} \mathrm{S}, 147^{\circ} 07.95^{\circ} \mathrm{E}\right), 503-497 \mathrm{~m}$, sledge, 16 May 1986,2 ovig. $¢(19.6,21.2 \mathrm{~mm})$, QMW19718.

Remarks

This identification is provisional, for the specimens have a red spot on the distal portion of the propodus of the walking legs, which is at variance with the color illustration of Munida incerta provided by Miyake (1982: pl. 49, fig. 5) and Baba in Babact al. (1986: fig. 121). There are no distinet morphological differences between these specimens and previous descriptions. However, available male specimens taken outside the Great Barrief Reef off Bowen, Queensland, and off Taiwan which likewise bear such red color spots, have a pronounced outward process on the anterior lateral expansion of the telson. This process is absent in specimens from the vicinity of the Kei Islands, the type locality of M. incerta. in the collection of the Copenhagen Museum, as well as in those reported by Miyake (1982) and Baba in Baba et al. (1986) (Baba, unpubl.). This fact suggests the existence of another species elosely related to M. incerta. Further investigation of these differences will be reported elsewhere, but the present females are not sufficient for claritication of the problem.

Munida leviantennata Baba. 1988
(Fig. 5)
Munida leviantennuta Baba, 1488:111, figs. 41, 42.

Material Examinen

Sta. $43-2\left(17^{\circ} 34.58^{\circ} \mathrm{S}, 146^{\circ} 53.21^{\circ} \mathrm{E}\right), 458-500 \mathrm{~m}$, sledge, 15 May 1986. 1 č(14.5mm). QMW19719:Sta.
$52-2\left(18^{\circ} 04.16^{\circ} \mathrm{S} .147^{\circ} 17.17^{\prime} \mathrm{E}\right), 490-512 \mathrm{~m}$, เхани trawi. 18 May 1986, 1 ơ(12.1mm), QMW19720.

REMARKS

The supraocular spines which were broken in the unique female holotype and which were speculated to be very close to the rostrum (Baba. 1988: 111), are rather remote from it; they are more or less divergent anterolaterally and more than two-thirds the length of the rostral spinc. Two pairs of gonopods are present in the male.

Range

Previously known only from the Molucea Sea off west coast of Halmahera, in 485 m .

Munida magniantennulata Baba \& Türkay. 1992

Munidamagniamennulata Baba \& Türkay, 1992: 205, figs. 2, 3: Baba ke de Saint Laurent, 1992: 326.

Material Examined

Sta. 20-4 $\left\{17^{\circ} 45.04^{\circ} \mathrm{S}, 147^{\circ} 48.14^{\circ} \mathrm{E}\right), 1,228-1,223 \mathrm{~m}$, beam trawil, 10 Moy 1986, 1 © (7.5mm). QMW19721; Sta. 35-3 ($\left.16^{\circ} 50.83^{\prime} S, 147^{\circ} 10.61^{\circ} \mathrm{E}\right), 1,607-1.609 \mathrm{~m}$ 。 sledge. 14 May 1986, 1 ㅇ(5.0mm): QMW19722.

REMARKS

This species has recently been described from active thermal vent areas in the Lau Basin in 1750-2003m (Baba \& Türkay, 1992:205; Bata \& de Saint Laurent, 1992:326). As its name suggests, this species has an unusually large antennular basal segment that. spines excluded. overreaches the midlength of the rostral spine, and exceeds the cornca by more than the full length of the eyestalk and cornea. The following characters seen in this material from non-active thermal vent areas differ from the type but may be within the limit of variation; four distinet epigastric spines, the lateral iwo smaller; chelipeds more spinose with relatively strong spines, the palm bearing a distinct dorsal row and the fixed fingers bearing one or two additional lateral marginal spines on the larger specimen; the second abdominal segment bears two or four dorsal spines, and the following segment bears a distinct transverse groove preceded by an elevated anterior ridge.

The larger specimen from Station 20-4 bears an externa and a few sears of rhizocephalan parasites.

F1G. 5. Munida leviantennata Baba, 1988. A, C. D. male from Sta. 43-2; B, male from Sta. 52-2. A, anterior part of carapace; B, same; C, dactylus of second walking leg, lateral view; D, dactylus of third walking leg. lateral view. Scales $=1 \mathrm{~mm}$.

RANGE

Previously known from the Lau Basin, in 17502003 m .

Munida microps Alcock, 1894
Munida microps Alcock, 1894: 326; Baba, 1988: 122 (references and synonymy).

Material Examined

Sta. 1-3 ($\left.18^{\circ} 07.87^{\prime} \mathrm{S}, 147^{\circ} 35.7^{\circ} \mathrm{E}\right), 956-969 \mathrm{~m}$, sledge. 6 May 1986, I spec. (sex indet., 5.8 mm), QMW 19723. Sta. $14-1$ ($\left.17^{\circ} 49.45^{\prime} S, 148^{\circ} 39.51^{\circ} \mathrm{E}\right), 990-1,(006 \mathrm{~m}$, bcam trawl, 8 May 1986, 1 б'(14.9 mm), QMW 19724.

REMARKS

In the larger specimen, eyes are somewhat larger than noted in carlier descriptions, but other specific characters are as diagnosed by Baba (1988:122). Two spines on the third abdominal segment are present as reported for the 'Albatross' specimen (Baba, 1988:122). The branchial spines directly behind the middle of the anterior bifurcation of the cervical groove is barely discernible in the smaller specimen.

Range
Previously known from the Arabian Sea, Maldives, off Colombo, Andaman Sea, Sulawesi and southeastern Australia off Green Cape, New South Wales; in 686-1,234m.

Munida pilosimanus Baba, 1969

Munida pilosimanus Baba, 1969: 26, figs. 8, 9; Baba, in Babaet al., 1986: 173. 291, rig. 123; Baba. 1988: 123.

Material Examined

Sta. 52-2 ($\left.18^{\circ} 04.16^{\circ} \mathrm{S}, 147^{\circ} 17.17^{\circ} \mathrm{E}\right), 490-512 \mathrm{~m}$, bcam trawl, 18 May 1986, 1 ठ (30.2mm). QMW 19725.

Remarks

Lateral protogastric spines are absent, but this specimen is undoubtedly referred to M. pilosimanus. No additional characters of significance were noted.

Range
Previously known from the Sulu Archipelago, Kyushu-Palau Ridge, Okinawa Trough and Tosa Bay, in 250-582m.

Munida rubridigitalis sp. nov,
(Fig. 6)

Material Examined

 ($17^{\circ} 51.76^{\circ} \mathrm{S}, 147^{\circ} 07.95^{\circ} \mathrm{E}$), $503-497 \mathrm{~m}$, sledge, 16 May 1986.
Paratypes. Samc data as hololype, 2 d (10.0$12.7 \mathrm{~mm}), 3$ ovig. $\uparrow(10.9-12.1 \mathrm{~mm}), 1 \%(9.5 \mathrm{~mm})$, 1 spec. (sex indet., 10.0 mm), QMW 19727.

FIG. 6. Munida rubridigitalis sp. nov., male holotype. A, dorsal view, left appendages omitted; B, anterolateral part of cephalothorax, showing antennular and antennal peduncles, ventral vicw; C , endopod of left third maxilliped, lateral view; D, sternal plastron; E, distal segments of right first walking leg, lateral view. Seales = 1 mm .

Etymology

From the Latin ruber (red) and digitalis (pertaining to a finger), alluding to the reddish tips of the cheliped fingers, a character that separates the species from its close relative M. compressa Baba, 1988.

Description of Holotype

Carapace, when measured from point level with mesial bases of left and right anterolateral spines to midpoint of posterior margin, slightly wider than long, dorsally arched from side to side, with numerous transverse ridges as figured,
median transverse ridge behind midcervical groove somewhat elevated. Cervical groove distinct. Epigastric region preceded by distinct depression, bearing row of 6 spines in 3 paits, mesial pair small, subequal to lateral pair in size, median pair directly behind supraocular spines pronounced. No other spinulation elsewhere on carapace, Lateral margin somewhat convex medially, bearing 7 spines: 2 in front of, and 5 behind, anterior bifurcation of cervical groove: first anterolateral, largest, 2 very small denticles behind; second spine smaller than first; third to seventh subequal. placed on anterior branchial region. Front margin somewhat oblique.
Rostral spine considerably compressed laterally, relatively high dorsoventrally, upcurved to about 30°, length about half that of remaining carapace and about four-fifths distance between its base and midcervical groove. Suprancular spines relatively stout, subparallel, 0,4 times as long as rostral spine; elevated as high as rostral spine bol tip somewhat depressed,
Abdominal segments with numerous striae; second segment dorsally with 7 ridges, anterion first ridge well elevated, with 8 spines of small size, fourth ridge preceded by distinet groove; third segment with 9 striae, fifth stria preceded by groove.
Eyes dilated, 0. 25 times as wide as carapace excluding spines, eyestalks with fringe of short setae near cornca.
Basal segment of antennule, exclusive of spines, nearly reaching end of cornea; 2 terminal spines subequal in size. First (proximal) segment of antennal peduncle produced into short stout spine at ventral distomesial margin; second segment also produced on distomesial and distolateral margins into sharp spines (distomesial one reaching end of peduncle), with extra small spine at midpoint of mesial margin; third and fourth segments unarmed.
Third maxilliped having ischium with small spine on flexor distal märgin, mesial ridge with 28 denticles. Merus distally narrowed, flexor margin with 2 spines, distal one terminal and smaller, proximal one situated at midiength of margin, prominent, accompanying very small spine distal to its base, extensor margin unarmed. Distal 2 segments slender.
Sternal plastron as figured, bearing scale-like ridges. Third thoracic sternite with bilobed anterior margin, $3: 6$ times as wide as long, Fourth thoracic stermite 2.3 times as long as preceding sternite, anterior margin rounded, its median portion contiguous to that of posterior margin of third
thoracic sternite. Seventh thoracic stemite laeking granules.
Chelipeds similar, relatively inassive, granulate on surface, marginally provided with both iridescent and short fine plumose setae somewhat thicker on mesial margins of merus. Merus with anterior end not reaching tip of rostrum, with 4 terminal spincs: dorsomesial spine strong, accompanied by small spine proximal to it; dorsal spine pronounced but smaller than dorsomesial, followed proximally by 7 other dorsal spines in row near lateral margin; lateral spine smaller, subequal to ventromesial, accompanied proximally by smaller spine; another distal spine middorsally, somewhat proximal to level of terminal spines. Carpus relatively short, somewhat longer than wide, spination as figured, distal second of mesial marginal spines prominent. Propodus moderately depressed, barely 1.5 times as long as carpus, 1.4 times as long as wide, lateral margin convex with 5 spines, distal one pronounced, remaining 4 very small; mesial margin with row of 4 or 5 small spines, those on right cheliped somewhat dorsal; dorsal surface proximally with small spine somewhat lateral to midline only on left cheliped. Fingers about as longas propodus, distally strongly curving, crossing when closed, opposable margins not gaping, Tined with denticles, fixed finger having lateral margin with small subterminal and another stmall proximal one, movable finger unarmed on mesial margin.
Walking legs relatively stout, posteriurly diminishing in size, covered with squamiform ridges particularly distinet on meri, mesially with both fine plumose and iridescent setae thick on meri, carpi and proximal half of propodi. First walking leg fully reaching juncture between propodus and movable finger of cheliped. Merus with 11 or 12 extensor marginal spines on first and second walking legs, terminal one strong; 1 strong terminal and 1 or 2 small accompanying spinules on third walking leg; flexor margin with terminal spine about as large as extensor terminal on anterior 2 legs, somewhat smaller on third. Corpus having extensor margin with strong distal spine followed proximally by smaller spine and 3-6 denticles. Propodus 6 (first walking leg), 8 (second), 7 (third) times as long as high, 1.4 (first), 1.6 (second), 1.5 (third) times as long ats dactylus, flexor margin with 8 relatively short comcous spines. Duciylus distally sharpened and curved, more distinctly so on third walking leg. extensor margin with rather stiff long setacesn one -thurd lengits proximal to cormeous toe, flexor
margin with 8 (on first and second) or 7 (on third) low processes each with seta-like inclined short spines, unarmed on distal fourth.
Epipods absent from all pereopods.

COlour in Preservative

Reddish on distal part of rostrum and distal half of fingers of cheliped.

Vakiation

Three pairs of epigastrje spines usually present. occasionally accompanied by a few small spines or tubercular processes Jaterally, Lateral protogastric spines piesent or absent. Number of spines on second abdominal tergum varying between 8 and 11 (mostly 8). Merus of cheliped with or without spine proximal to prominent terminal dorsomesial one; another spine proximal to terminal ventromesial one often absent. Number of propodal flexor marginal spines varying from 7 to 11 (mostly 9) on first walking leg, 8 or 9 on second, mostly 8 , often 9 . rarely 7 on third.

Remarks

Munida ruhridigitaris is most closely related to M. compressa Baba, 1988, a species distributed from the Molucca Sea, South China Sea from off southwestern Luzon, north to off southwestern Formosa and Tosia Bay, 180-545m (Baba, 1988:91), in particular, the compressed rostrum with a red distal mark and the short chelipeds with pronounced terminal spincs on the merus. The differences between the two species are very slight, but I believe that the combination of the following characters is sufficient to differentiate them: the transverse ridges on the carapace and abdominal segments in M. rubridigitalis are distinctly more numerous (seven and nine ridges on the second and third abdominal segment, respectively) and rather weakly elevated, while in M. compressa they are fewer (in particular, the second and third abdominal segments have only 3 ridges each) and major striae on the carapace are rather elevated; the propodi of the walking legs have 5 or 6 slender spines in M. compressa, 8 or 9 in M. rubridigitalis; the cheliped fingers are reddish on the distal half in M. rubridigitalis. whitish over their whole length in M compressa; the plerygostomian flap has a reddish patch directly below the linea anomurica in M. compressa (Baba, unpubl.), none in M. rubridigitalis.

Munida squamosa Henderson, 1885

Munido squamost Henderson, 1885: 409; Yanagita, 1943: 18: Macpherson. 1993: 425.

Material Examined

Sla. $47-2$ ($17^{\circ} 51,76^{\prime} \mathrm{S}, 147^{\circ} 07.95^{\circ} \mathrm{E}$), $503-497 \mathrm{~m}$, sledge, 16 May 1986, 13 ó(11.2-14.8mm), 11 ovig. $9(11.3-14.7 \mathrm{~mm}), 3$ 只 ($9.5-9.7 \mathrm{~mm}$). QMW1971।.

Remarks

According to Macpherson (1993: 425), M. squamosa is characterized by the prominent cardiac spine, presence of a spine on the distomesial margin of the second segment of the antennal peduncle, and short and stout dactyli of the walking legs, all to mention the obvious differences from M. analoga Macpherson, 1993, from the Philippines and Indonesia. The 'Albatross' material of M. squamosa identified by Baba (1988:133) was merged with M. amalogat (Macepherson, 1993: 424).

Range

Previously known from the Admiralty Islands and Japan in 275-360m. The known range is now extended to eastern Australia.

Munidopsis Whiteaves, 1874
Munidopsis cidaris sp. nov. (Fig. 7)

Matertal Examined

HoLotype: $\delta(11.6 \mathrm{~mm})$, QMW19712, Sta, 25-1 $\left(17^{\circ} 18.73^{\circ} \mathrm{S}, 147^{\circ} 37.20^{\prime} \mathrm{E}\right), 1,128 \cdot 1.178 \mathrm{~m}$, hearn Irawl. 11 May 1986.

Etymology

The specific name is a noun in apposition from the Greek didaris, referring to the name of this expedition.

Description of Holotype

Carapace, excluding rostrum, slightly longer than wide, narrowed posteriorly, moderately arched transversely, greatest width between anterior branchial regions, cervical groove distinct. Gastric region lacking dorsal spines, with scale-like rugae moderately elevated; moderately inflated metagastric area of reverse triangleshape defined by shallow groove arising from near junction of anterior and posterior bifurcations of cervical groove. Hepatic and anterior branchial regions separated by anterion cervical groove, provided dorsally with tubereles: sach

FIG. 7. Munidopsis cidaris sp. nov., male holotype. A, carapace and abdomen, dorsal view; B, same, lateral view: C, telson and right uropod; D, anterolateral part of cephalothorax, showing antennular and antennal peduncles, ventral view; \mathbb{E}, endopod of left third maxilliped, lateral view; F, sternal plastron, posterior portion omitted; G. left cheliped, dorsal view; H, distal segments of right first walking leg, lateral view. Scales $=1 \mathrm{~mm}$.
margin lobe-like, separated by noteh corresponding to cervical grove, anterios lobe (hepalie) with blunt short anterolateral spine. End of posterior bifurcation of cetvical groove bordering anterior and posterior branchal regions. as figured. Posterior half of carapace with larger seale-like ridges more distunety elevated than those on gastric region, cardiae region well elevated anteriorly but sloping down posteriorly, with transverse ridge considerably raised in profile from level direstly anterior tos it. Fromt margin slightly oblique, convex dircouly behind insertion of antennal peduncle.
Rostrum short, roughly himingular, basally wide, 0.27 times as long as remaining carapace: nearly horizontal. dorsally weakly carinate, ending in rounded lip.
Fyes small, immovable, reaching to about midlength of rostrum, comeas rounded, cyestalks short without any processes
Abdominal segments rather smooth, second and third segments eath with antcrint and posterior transverse nidges, both well clevated; lourth segment with anterior ridge only, fifth segment without ridges, sixth segment without distinct labes on posterior margin. Telson divided into 8 plates, midateral plate fringed with stiff serae.
Basal segment of antennule clingare, mome narrowed proximally than distally, with distodorsal spine of moderate size; lateral margin markedly inflated; distomesial partion produced but not spiniform; ventral terninal margin denticulate and strongly slmping. Antcnnal peduncle unarmed, lirst (proximal) segment with very short blunt process on ventral distomesial margin: second segment marrowed proximally.
Ischium of third maxilliped with small spine on Ilexor distal margin: mesial ridge with 24 denticles. Merus distinctly longer than ischium when measured in inidateral line, lateral face widest at midlength, flexor margin with 4 or 5 distally diminishing spines on distal half.
Third theracic sternite strongly narrowed pusteriorly. width slightly less than half that of following sicrnite, anterior margin sinuous, greates widh 3 times greatest length. Fourth thoracie stemite subtriangular. with anteriorly Iruncate margin contiguous to posterior margin of preceding sternite.
Chelipeds unequal in lenyth, left one longer and wider: length 2.5 (left) or 2.1 (right) times that of carapace excluding rostrom: finely granulate. sparsely provided with shont setae; somewhat depressed distally. Merus with distomesial mar-
gin bluntly produced. Carpus as long as movable finger. Propodus 1.8 times as long as wide, 1.26 (left) or 1.08 (right) limes as long as movathle finger, mesial margin nearly straight. lateral margin convex Fingers slightly gaping on left. nol gaprig on right, ventrally spooned, opposable margins lined with alenticles, medially strongly convex on fixed finger, somewhat concave on movable finger; distally incurved to eross each other when closed.
Walking legs relatively slender. lincly granulate, monspinose on surface, gradually diminislıing in length: first walking leg ending at about midille of inovable finger of cheliped. Merus with lateral face flatish. exiensor margin crested with rounded ridge coutinucd into carpus, flexor distal margin with minute process. Propodus almut 8 times as long as wide, 1.5 times length of dictylus, flexor margin with small distal spine. Dactylus slender, strongly curving, distally spinilorm, flexor margin nearly smooth, with a fuw vely small eminences discernible under ligh magnification.
Epipods present on chelipeds and follownge two pairs of walking legs.

Remarks

The carapate beating scale-like, elevated tubercles, well-defined regions, weak lateral marginal spines, the seend and third athdominal segments unarmed but with iwo elevated transversi ridges, and the chelipeds lacking distinct spines. link the species to M, hemingi Alcock \& Auklerson, 1899, obained by the 'Investigator' from the Travancore [Kelara] coast in 787m (Aloock \& Anderson. 1899:19: Alcock, 1901:251). The 'Investigator' species, however, has the carapace broader behind than in front, and bears distinet epigastrie spines; the eyes are slightly movathle, and have a very small papilliform spine at the messial angle of the eyestalk; the cheliped has a distomesial spine on the carpus: and the four sairs of perenpods bear epipods. Thesc characters all serve to separate it from M. ciduris.

Munidopsis rostrata (A. Milne Edwiscls, 1880)

Galacanthe rostrara A. Milac Edwurds, 1880: 52. Goloramharostrato: Chace, 1942: 75 (synonymy ind seferences): Baba. 1988:161.

Material Examined

Sta. 32-2 ($\left.17^{\circ} 05.89^{\prime} \mathrm{S}, 147^{\circ} 11.85^{\circ} \mathrm{E}\right)$, 1,539-1.517m, beam trawl, 13 May 1986, 4 ovig. ?(15.7-18.0mm), 1〔(13.7mm), QMW19713.

Range

This widespread species occurs in the IndoPacific, Allantic and Southern Oeeans, in 1,6503.294 m . See Chace ($1942: 76$) and Baba (1988:162) for distribution.

Munidopsis trachynotus (Anderson, 1896)
Ciolacamha rrachynotus Anderson, 1896: 100.
Munidopsis trachynoms: Baba, 1988: 171 (synonymy and references).

Material Examined

Sta. 30-4 ($\left.17^{\circ} 19.12^{\circ} \mathrm{S}, 147^{\circ} 11,20^{\prime} \mathrm{E}\right)$, 1,403-1,385m, heam lrawl, 12 May 1986, I © (25.7mm), QMW19714.

Rance

Previously known from the Arabian Sea and Sulawesi, in $1.380-1.893 \mathrm{~m}$,

Munidopsis valdiviat (Doflein \& Balss, 1913)
Salacantha valdiviae Doflein \& Balss, 1913: 147. lig. 15, pl. 16: fig. 2.
Munidopsis valdiviae: Baba, 1982: 112, pl. 1: fig. 1i 1988: 173, Fig. 71.

MATERIAL EXAMINED
Sta. 13-1 ($17^{\circ} 58.49^{\prime} \mathrm{S}, 148^{\circ} 38.40^{\prime} \mathrm{E}$), 1.040-1,059m. beam trawl. 8 May 1986, 1 (8 (19.6 mm), QMW19715.

REMARKS

In this specimen, the two epigastric spines which are usually very small, are absent.

Range

Previously known from east Africa off southern Somali Republic, Molucca Sea off northwestern Sulawesi, Palawan Passage, and Japan, in 1,120$1,644 \mathrm{~m}$. The range is now extended to northcastern Australia.

Paramunida Baba, 1988
Paramunida scabra (Henderson, 1885)
Munida seabra Henderson, 1885: 409.
f"uramunida scabra: Baba, 1988: 180 (synonymy and references): 1990:968, fig. 15A.

Material Examined

Sta. 47-2 ($\left.17^{\circ} 51.76^{\circ} \mathrm{S}, 147^{\circ} 07.95^{\circ} \mathrm{E}\right), 503-497 \mathrm{~m}$, sledge, 16 May $1986,4 \delta(8,1-9.9 \mathrm{~mm}), 6$ ovig. $8.2 \mathrm{~mm})$, QMW 19716.

REMARKS

The antennal peduncles are as described and illustrated for Paramunida fricarinata from Madagascar, not as in the female syntype of P. scabra (see Baba, 1990:986, fig. 15), but the gastric spination is typical of the species, having a median spine only.

Range

Previously known from the Malay Arehipelago ineluding the Kei Islands, northern Bomeo and Philippines, off Hong Kong, off southwestern Taiwan. East China Sea, and Japan, in 70. $1,630 \mathrm{~m}$. The range is now extended south to sff northeastern Australia.

ACKNOWLEDGEMENTS

Ithank Dr. Michel Pichon, cruise leader of the 'Cidaris I' Expedition and deputy direetor of the Australian Institute of Marine Seience, Dr. Peter Arnold, a curator al the Museum of Tropieal Queensland, Townsville, and Frank Hoedt, then research officer with the project, for making the specimens available for study. The holotype of Galathea inconspicua Henderson in the collection of the Natural History Museum, London, wais made available on loan through Paul F. Clark to whom I express my appreciation. The manuseript benefited from reviews by Peter J.F. Davie of the Queensland Museum, Gary C.B. Poore of the Museum of Victoria, Melbourne, and an anonymous reviewer, and from discussion with Enrique Macpherson of the Instituto de Ciencias del Mar, Barcelona and Michéle de Saint Laurent of the Muséum national d'Histoire naturelle. Paris. Pertinent background data were made available by Peter Davie.

LITERATURE CITED

Al,COCK, A. 1894. Natural history notes from H.M. Indian marine survey steamer 'Investigaror". commander R.F. Hoskyo, R.N., late commanding. - Series Il, No. 1. On the results of the deep-sea dredging during the season 1890-91 (continued). Annals and Magazine of Natural History (6)13: 321-334.
ALCOCK, A. \& ANDERSON, A.R.S. 1899. Natural history notes from H.M. Royal Indian marine survey ship Investigator, commander T.H.

Heming. R.N., commanding. - Scries III, No, 2 , An account of the deep-sea Crustacea dredged during the surveying scason of 1897-98. Annals and Magazine of Natural History (7)3; 1-27.
ANDERSON, A.R.S. 1896. Natural history notes from the R.I.M,S, steamer "Investigator". Ser. II, No. 21. An account of the deep-sea Crustacea collected during the season 1894-95, Journal of the Asiatic Snciety of Bengal 65(II:2): 88-106.
$\mathrm{BABA}, \mathrm{K} .1969$, Four new genera with their representatives and six new species of the Galatheidae in the collection of the zoological laboratory, Kyushu Universaly, withredefinition of the genus Galathea, OHMU, Occasional Papers of the Zoologicail Laboratory, Faculty of Agriculture, Kyushu University 2(1). 1-32.
1970. Redescription of Bathymunida brevirostris (Yokoya, 1933) (Crustacea, Decapoda, Galatheidac). Memoirs of the Faculty of Education, Kumamoto University, Section 1 (Natural Science) 18: 59-62.
1982. Deep-sea galatheidean Crustacea (Decapoda, Anomura) taken by the R/V Soyo-Maru in Japanese waters. II. Family Galatheidac. Bulletin of the National Science Museum, Tokyo, series A (Zoology) 8(3): 103-118.
1986. Two new anomuran Crustacea (Decapoda: Anomura) from north-west Australia. The Beagle $3(1)=1.5$.
1988. Chirostylid and galatheid cruslaceans (Decapoda Anomura) of the "Albatross' Philippitie Expedition, 1907-1910. Researches of Crustacea, Special Number 2: v, 1-203.
1989. Anomuran crustaceans ohtained by dredging from Oshima Strait, Amami-Oshima of the Ryukyo Islands. Memoirs of the National Science Muscum 22:127-134.
1990. Chirostylid and galatheid erustaceans of Madagascar (Decapoda: Anomura), Bulletin du Musćum national d'Histcire maturelle, Paris (4) section $A,(1989)$ 11(4): 921-975.
BABA, K, HAYASHI, K, \& TORIYAMA, M. 1986. Decapod crustaceans from continental shelf and slope around Japan (Japan Fisheries Resource Conservation Association- Tokyo).
BABA, K. \& MACPHERSON, E. 1991. Reexamination of the type material of Munida militaris Henderson. 1885 (Crustacea: Decapoda: Galatheidac), with the selection of a loctotype. Proceedings of the Biological Socicty of Washington, 104(3); 538-544.
BABA, K. \& SAINT LAURENT, M. DE. 1992. Chirostylid and galatheid crustaceans (Decapoda: Anomera) from active thermal vent areas in the southwest Procific. Scientia marina 56(4): 321-332.
BABA, K. \& TÜRKAY, M. 1992. Munida magniantermulara, a new decpsea decapod crustacean from active thermal vent areas of Valu-Fa-Ridge in the Lau Basin, SW-Pacific (Anomura:

Galatheidac). Senckenhergiana maritma 22(3/6): 203-210.
BAL.SS, H. 1914, Üher einige interessante decaporien der 'Pola'-Expeditionen in das Rote Meer. Anzeiger der Kaiserlichen Akademic der Wissenschafien, Mathematisch-Natur-wissenshafiliche Klasse 51(9): 133-139.
1921. Results of Dr. E. Mjoberg's Swedish scientific expeditions to Australia 1910-13, XXIX Stomatopoda, Macrara, Paguridea und Galatheidea. Kungliga Svenska Vetenskapsakademiens Handlingar 61(10); 2-24.
BOONE, L, 1935. Scientific results of the world cruise of the yacht 'Alva' 1931, William K. Vanderhilt, commanding. Crustacea and Echinodermnta, Bulletin of the Vanderbilt Marine Muscum. Huntington, New York 6: 1-264
BRUCE, A.J., 1989. Two mantis shrimps new to the Australian fauna (Crustacea: Stomatopoda: Bathysquillidae). The Beagle 5 (1988): 87-95.
1990. Periclimenes franklini sp. nov., a now doep sea shrimp from the Coral Sea (Crustacea: Decapoda. Palaemonidae), The Beagle 7(1): 5564.

CHACE, FA., Jr, 1942. The anomuran Crustacea.). Galatheidea. Reports on the scientific results of the Allantis expeditions to the West Indies, under the joint auspices of the University of Havana and Harvard University, Torreia 11: 1-106,
CROSNIER, A, 1988, Contribution a l'étude des genres Haliporus Bate 1881 et Gordonella Tirmizi 1960 (Crustacea Decapoda Penaeoidea). Description de deux especes nouvelles. Bulletin du Muséum national d'Histoire naturelle., Paris (4) 10 (A): 563-601.

DOFLEIN, F, \& BALSS, H. 1913. Die galatheiden der Deutschen Tiefsee-Expedition. Wissenschaftliche Ergebnisse der Deutschen TiefsceExpedition auf dem dampler "Valdivas' 1898-1899, Jena 20: 125-184.
FABRICIUS, J.C. 1793, 'Entomologia systematica emendata et aucta secundum classes, ordines. genera, species ajectis synonymis, locis, observationibus, descriptionihus*, Volume 2. Hafniae.
GRANT, F.E. \& McCULLOCH, A.R. 1906, On a coffection of Crustacea from the Port Curtis district, Queensland. The Proceedings of the Linnean Society of New South Wales 31: 2-53.
HAIG, J. 1973. Galatheidea (Crustacea, Decapoda, Anomura) collected by the FIS.S. Endeavour. Records of the Australian Museum 28(14): 269 289
1974. The anomuran crabs of Western Australia: their distribution in the Indian Ocean and adjacent scas. Journal of the Marine Bjological Association of India 14(2): 443-451.
HALE, H,M, 1927, "The crustaceans of South Australia'. Part 1. (Government Printer: Adclaide)
HASWELL, W.A. 1882a. Description of some new species of Australian Decapoda. The Proceedings
of the Linnean Society of New South Wales 6: 750-763.
1882 b . 'Catalogue of the Ausiralian stalk and ses-sile-cyed Crustacea'. (Australian Museum: Sydney).
HENDERSON, J.R. 1885. Diagnoses of the new species of Galatheidea collected during the 'Challenger- Expedition. Annals and Magazine of Natural History (5) 16: 407-421.
1888. Report on the Anomura Collected by H.M.S. Challenger during the Years 1873-76. Report on the Scientific Results of the Voyage of H,M.S. Challenger During the Vears 1873-76, Zoology 27: 1-221.
KHODKINA, I, V, 1981. A contribution to the fauna of the family Galatheidac (Decapoda) of the southwest Pacilic. Zoologicheskii Zhurnal 60(8); 1261-1264.
LEACH, W.E. 1820. Galatóadées. Dictionnaire des Sciences Naturelles, Paris 18: 48-56.
LEWINSOHN, C. 1967, Beitrag zur kenntnis und verbreitung von Galathea australiensis Stimpson, 1858, (Crustacea Decapoda, Anomura, Galatheidie) nebst beschreibung eines neotypus, Zoologische Mededelingen, Leiden 42(18).
MACPHERSON, E, 1990. Crustacea Decapoda: on a collection of Nephropidac from the Indian Ocean and Western Pacific. In, Crosnier, A. (ed.), Résultats des campagnes MUSORSTOM, Volume 6. Mémoires du Muséum national d'Histoire naturelle, Paris (A) 145: 289-328.
1993. Crustacea Decapoda: Species of the genus Munida Leach, 1820 (Galatheidac) collected during the MUSORSTOM and CORINDON craises in the Philippines and Indonesia. In Crosnier, A., (ed.), 'Résultats des Campagnes MUSORSTOM', Volume 10. Memoires du Muséum national d'Histoire naturelic, Paris, Zoologie 157: 381-420.
MACPHERSON, E. \& BABA, K. 1993. Crustace 2 Decapoda: Munida japontica Stimpson. 1858, and related species (Galatheidae). In Crosnier, A. (ed.), 'Resultats des Campagnes MUSORSTOM', Volume 10. Memoires du Muséum national d'Histoire raturelle, Paris, Zoologic 157: 381-420.
MeNEILL, F.A. 1926. The biology of North-West Islet, Capricorn Group. Australian Zoologist 4(5): 299-318.
1968. Crustacea, Decapoda \& Stomatopoda,-Scientific Reports of the Great Barrier Recf Expedition 1928-29, British Museum 7(1): 1-98.
MELIN, G. 1939. Paguriden und galataheiden von Prof. Dr. Sixten Bocks Expedtion nach den Bonin-Inscln 1914, Kungliga Svenska Vetenskapsakademiens Handlinger (3) 18(2):1119
MIERS, J.E. 1884, Crustaced. Pp, 178-322, 513-575 In 'Repint on the zoological collections made in
the Indo-Pacific Ocean during the voyage of H.M.S. 'Alert' 188I-2', (British Muscum: London).
MILNE EDWARDS, A. 1880 . Reponts on the results of dredging under the supervision of Alexander Agassiz, in the Gulf of Mexico and in the Caribbean Sea, etc. VIII. Etudes préliminaires sur les Crustaces. Bulletin of the Museum of Comparative Zoology at Harvard College, in Cambridge 8(1):1-68.
MIYAKE,S. 1982 . 'Japanese crustacean decapods and stomatopods incolor'. Vol. 1. Macrura, Anomura and Stomatopoda. Hoikusha: Osaka.
ORTMANN, A. 1894, Crustaceen. Pp, 3-80, In Semon, R. (ed.), 'Zoologische forschungsreisen in Austration und dem Malayischen Archipel'. Denkschriften der medizinisch-naturwissenschaftlichen Gesellschafi zu Jena 8.
POORE, G.C.B. \& BARDSLEY, T.M, 1992 Austrarcturellidae (Crustacea: Isopoda. Valviera), a new family from Australasia, Invertebrate Taxonomy 6: 843-908,
RICHER DE FORGES, B. \& GUINOT, D. 1990. A new Cyrtomaia: C. griffini from Australia (Crustacea: Decapoda: Brachyura), Memoirs of the Queensland Museum 28(2)! 523-530,
SAINT LAURENT, M. DE \& MACPHERSON, E. 1990. Les especes atlantiques du genre Eumunida Smith, 1883 (Crustacea: Decapoda: Chirostylidae). Journal of Natural History, 24(3): 647666.

STIMPSON, W. 1858. Prodromas descriptionis animalium evertebratorum, quae in Expeditione ad Oceanum Pacificum Septentrionalem a Republica Federata missa, Cadwaladaro Ringgold et Johanne Rodgers Ducibus, observavitet descripsit. Pars VII. Crustacea Anomura. Proceedings of the Academy of Natural Sciences of Philadelphia 10: 225-252.
VAN DAM, A.J. 1938. Dic gattung Bathymmida Balss. Zoologischer Anzeiger 121: 194-202
WHITEAVES, J.F. 1874. On recent deep-sea dredging operations in the Gulf of St Lawrence. American Journal of Seience (3) 7:210-219.
WHITELEGGE, T 1900 , Crustacea Part 1. Scienlific results of the trawling expedition of H.M.C.S. Thetis, off the coast of New South Wales it February and March, 1898. Australian Muscum, Sydney, Memoir 4: 133-199.
YANAGITA 1, 1943. Revision of Munida, a genus of decapod crustaccans found in Japanese walers. Bulletin of the Biogeographical Sucicty of Japan 13:13-32,
YOKOYA, Y, 1933. On the distribution of decapod crustaceans inhabiting the continental shell around Japan, chiefly based upon the materials collectod by S.S. Soyo-Maru during the years 1923-1930, Journal of ibe College of Agriculture, Tokvo Imperial University 12(1):1-226

